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Figure 1: An overview of the Intelligent Virtual Human Toolkit, including I. Virtual Human 3D Models, II. Motion Tracking and
Action Classification; III. Speech and Facial Interaction, IV. Full Body Animation and Interaction, and V. Multimodal Interaction
modules.

ABSTRACT

This paper introduces an initial implementation and a preliminary
evaluation of a toolkit for providing Intelligent Virtual Humans
in Extended Reality (XR) environments. These virtual humans
may serve as avatars for users, known as Smart Avatars, or arti-
ficial agents, known as Intelligent Virtual Agents. The presented
toolkit consists of five modules that contribute to producing real-
istic human-to-human and human-to-agent interactions in XR. The
primary focus lies in enabling natural, multimodal communication
and interaction through a range of expressive capabilities, including
speech, facial expressions, gaze tracking, and full-body animations.
By enhancing the realism and responsiveness of virtual humans,
this paper strives to facilitate their use in a variety of metaverse ap-
plications.

Index Terms: Extended Reality, Intelligent Virtual Agents, Smart
Avatars
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1 INTRODUCTION

An essential aspect of the Metaverse is to provide users with a rep-
resentation of themselves and ’others’ in Extended Reality (XR)
environments [36]. The term ’others’ refers to both humans, rep-
resented as (smart) avatars, as well as intelligent virtual agents
(IVAs). These intelligent virtual humans play a crucial role in vari-
ous XR applications, including cultural heritage [15], training [53],
health care [21, 2], and remote collaborations [50].

Despite their significant potential, creating intelligent virtual hu-
mans for XR applications faces various challenges. Firstly, to give
users a high sense of presence and immersion in an XR experience,
the 3D human models need to accurately represent the visual and
physical appearances of the users so that they can be reliably used
as their 3D virtual avatars [47]. The process of generating these
3D characters must also be fast and cost-effective, enabling users to
create personalized virtual representations easily [10]. Secondly, to
enable engaging human-agent interactions and collaborations, IVAs
need to perform human-like behaviors that are both plausible and
natural. For example, the IVAs can detect and understand human
users’ actions and create suitable multimodal responses to users’
multimodal inputs via natural speech, facial, and full-body inter-
actions [6]. Moreover, virtual humans not only need to behave in
a socially-compatible manner but their motions and interactions in
the virtual world need to follow the physical laws like that of the
real world, thereby, ensuring a high level of embodiment and pres-
ence during the XR experience [49].

This paper introduces our ongoing research to design and imple-



ment intelligent virtual humans targeting cost-efficient approaches.
Our goal is to create a comprehensive toolkit for both smart avatars
(SAs) and intelligent virtual agents (IVAs), supporting: (I) a cus-
tomizable 3D human model creation pipeline, (II) low-latency mo-
tion tracking and action classification through machine learning
(ML) integration, (III) natural speech and facial expression syn-
thesis, and (IV) realistic, physics-based full-body animations and
interactions (see Figure 1). Our goal is to facilitate natural and ef-
ficient multimodal interactions between SAs and IVAs, enabling
their application across a wide range of metaverse use cases. We
provide an initial implementation of the toolkit, along with a pre-
liminary evaluation involving four XR developers. We also discuss
the current limitations and challenges encountered during develop-
ment and outline a roadmap for the toolkit’s continuous improve-
ment and integration in future releases.

2 RELATED WORK

Intelligent Virtual Agents (IVAs) are autonomous characters de-
signed to interact naturally with humans in virtual environments.
Recent advances in artificial intelligence have significantly en-
hanced their capabilities across several dimensions. IVAs typically
integrate natural language processing for conversation, computer
vision for environmental awareness, and generative models for be-
havior generation. Notable developments include improved emo-
tional intelligence through facial expression recognition and gener-
ation [23], context-aware dialogue systems [25], and sophisticated
decision-making architectures [28] . Their effectiveness depends
heavily on the seamless integration of verbal and non-verbal com-
munication channels, including gaze, gestures, and full-body move-
ments.

Previous studies have shown that humans maintain social rules
in the presence of more human-like virtual agents [32]. Bailen-
son et al. [3], for example, showed that people in virtual environ-
ments keep a larger distance to virtual agents than to virtual objects.
They also associate more human-like characteristics such as being
alive, calm, intelligent, and friendly to virtual agents in XR [33, 35].
Moreover, research has shown that IVAs can be used to elicit hu-
man emotions [39] such as psycho-social anxiety [31] or facilitate
their cognitive [22] or physical task performances [34].

On the other hand, avatars are referred to as virtual characters
that are controlled by real users and are used for self-representation
in virtual worlds [12]. Previous studies have shown that the sense
of presence and embodiment can be improved when users are pro-
vided with avatars [44]. Avatars can facilitate generating the body-
ownership illusion which arises when users have a sense of own-
ership over the virtual body that they have received in the virtual
world, despite the certain knowledge that the virtual body is not
their real body [29]. When using a humanoid avatar, users typically
receive an upper body representation which can be controlled with
limited input including a head-mounted display (HMD) and hand
controllers. However, recent research has proposed using Smart
Avatars (SA) [13] which can perform complex movements and ex-
press natural behavior despite having limited system input. For in-
stance, users with SAs can have continuous full-body human repre-
sentations for noncontinuous locomotion in XR. In addition, if the
users teleport, their SAs would imitate their assigned user’s real-
world movements and autonomously navigate to their user when
the distance between them exceeds a certain threshold. Thus, the
observers could observe a natural human walk for that user instead
of instant jumps caused by the teleportation.

A number of methods have been employed to create realistic hu-
manoid 3D models that can be used as both agents and avatars.
This may include complex technical setups, such as multi-view
camera domes [7], or AI-based approaches, such as generative neu-
ral network architectures and diffusion models (e.g., autoencoders
[27] ), and Neural Rendering. The combination of these methods

can potentially overcome the limitations of current solutions (Unity
ZIVA1, Unreal MetaHuman2 or SoulMachines3), such as disturb-
ing gaps in the perception process leading to uncanny valley effects
[30], particularly noticeable for facial animations given that the hu-
man neural system is extremely sensitive for processing faces [20].

Regarding interactive character animation, recent years have
shown considerable progress in the use of machine learning tech-
niques for both kinematic (see, for example, [51, 42]) and physics-
based controllers (see, for example, [38, 4, 16, 24, 52]). These have
made these techniques more amenable to the creation of IVAs for
VR experiences. It also allows exploring the perceived quality of
character animation in VR experiences [8], and introduces a differ-
ent way to investigate open questions in motor neuroscience [26].

There are however still numerous issues to address in the field.
Current techniques can generate physically plausible movements
[38, 37], but achieving the nuanced expressivity and stylistic varia-
tions typical of human motion remains difficult [37, 48]. The mas-
tering of body language is still a challenge, maintaining a consistent
character style across different behaviors [1, 41]. To enable interac-
tions with embodied users, real-time performance is mandatory to
react with the lowest latency [45]. Both users and environmental in-
teractions present exciting opportunities for future research in com-
bining physics-based approaches with data-driven methods to cre-
ate more sophisticated and believable virtual characters [43, 4, 16].

3 INTELLIGENT VIRTUAL HUMAN TOOLKIT

In this work, we present our Intelligent Virtual Human (IVH) toolkit
whose goals are i) to provide real-time photorealistic humanoid
3D models based on cost-efficient technology, which can repre-
sent users (avatars) or agents (IVA), ii) to support natural and mul-
timodal communication and interaction via speech, facial expres-
sions, gaze, and full-body animations, and iii) to move from sim-
ple human-human communication to hybrid forms of interaction
including multiple real and artificial users represented by smart
avatars and IVAs. This toolkit is developed for the Unity3D game
engine and comprises five modules that are explained in this sec-
tion.

I. Virtual Human 3D Models
The first module provides a set of virtual humanoid 3D models,
diverse in terms of represented gender, age, and ethnicity. They
are intended to be used out of the box for multiple use cases in-
cluding professional collaborations, manufacturing training, health
care, and cultural heritage (see Figure 1-I). In addition, this module
will deliver an efficient user-driven offline pipeline for generating
fully rigged, skinned, and animatable humanoid 3D models with
high visual fidelity [9]. It will use simple (mobile) camera setups
to capture RGB-depth photo of the user’s head to serve as an in-
put to a convolutional neural network that estimates the weights of
a morphable model to produce an initial head shape that is further
adjusted through landmark-guided deformation [10]. When creat-
ing the head model, the input data will be normalized in terms of
specularity, shadows, and image artifacts, and relighting methods
will be implemented to ensure that the generated virtual humans
can be used in different virtual environments adapting to various
environmental conditions.

II. Motion Tracking and Action Classification
This module is responsible for detecting and classifying the actions
of virtual humans in the scene in realtime. Unfortunately, the ma-
chine learning capabilities available within Unity are severely lim-
ited. For example, the Barracuda Unity package for neural net-
works does not support modern transformer-based architectures.

1https://unity.com/blog/news/update-about-ziva
2https://www.unrealengine.com/en-US/metahuman
3https://www.soulmachines.com/

https://unity.com/blog/news/update-about-ziva
https://www.unrealengine.com/en-US/metahuman
https://www.soulmachines.com/
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Figure 2: Mean values relating to the AttrakDiff sub-scales, includ-
ing Pragmatic Quality (PQ), the Hedonic Quality concerning Iden-
tity (HQ-I), the Hedonic Quality concerning Stimulation (HQ-S),
and the general Attractiveness (ATT).

We therefore developed a novel framework that relies on two main
components: 1) A Visual Analyzer Python application that does the
actual realtime action classification and sends the classification re-
sults to Unity, and 2) a Unity package that receives the result of the
action classification via REST API and renders a video live stream
from a certain virtual camera viewpoint. In that way, we can use
the powerful Python packages for deep learning (like Pytorch, etc.)
as well as helpful Python modules for parallel processing like the
Multiprocessing module. The Visual Analyzer application does the
processing of the input video stream received from Unity in mul-
tiple steps. First, all virtual humans are detected with an object
detector (we employ Scaled-YoloV4) and tracked with an optical-
flow-based method. In parallel, for all detected humans their 2D
pose (skeleton) is calculated with the RTMPose pose estimation al-
gorithm. The actions of one human are now calculated from the tra-
jectory of its 2D poses within approximately the last second. Cur-
rently, as shown in Figure 1 II, the module can already detect the
action when a virtual human raises a hand in realtime. For detect-
ing this action, we use a simple heuristic: we check whether the
elbow is located higher than the torso and whether the upper arm
is approximately vertically oriented. The algorithm can detect this
action with a delay of less than one second. In the future, we will in-
tegrate deep-learning-based action classification algorithms which
are also using the 2D skeletons as input.

III. Speech and Facial Interaction

This module focuses on enhancing the communication capabilities
of the IVHs through speech and facial interaction utilizing the 3D
humanoid characters developed in the first module. This module
aims to achieve two main objectives using the models created in
Module I: the creation of SAs, which embody users in XR en-
vironments, and the development of IVAs, which are AI-powered
computer-generated characters. These avatars and agents enhance
interactivity and engagement in XR applications, utilizing advanced
AI technologies for natural communication.

As shown in Figure 1 III, we have developed methods for nat-
ural communication between humans and SAs as well as IVAs
based on processing spoken language and facial expressions. We
have integrated AI-based services to enable speech-based interac-
tion between users and IVAs. In particular, we have employed
speech-to-text (currently Google API STT) and text-to-speech syn-
thesis (currently OpenAI TTS and Azure TTS) technologies and
large language models (currently through OpenAI’s chat creation
endpoint using models such as GPT-4o, GPT-4o-mini, or GPT3.5-
turbo) to provide conversational capabilities for the IVAs. This al-
lows for contextually relevant and coherent dialogues between users
and IVAs. With the training of a custom or personal neural voice

through Azure, it is possible to further increase the realism of digi-
tal twins, also including the voice of the user. The SAs of the users
have also facial expression and upper-body tracking (i.e., head and
hands) leveraging the latest development of the Meta Movement
SDK4. Both types of IVHs benefit from Oculus’ lipsync technol-
ogy5 which maps users’ or IVAs’ voices to the movements of their
virtual lip representations in XR. Finally, the IVAs are capable of
expressing six basic emotions (happiness, sadness, anger, disgust,
fear, and surprise) in different intensities and durations according
to their conversation with the user. This is done by changing their
corresponding facial blendshapes based on the action units of the
facial action coding system (FACS) [11].

IV. Full Body Animation and Interaction
To animate IVAs, we are exploring the extent to which emerg-
ing physics-based motor control techniques can improve the body
movements of interactive virtual reality (VR) characters. The tech-
nical challenge is to bring physics-based character animation tech-
niques – typically used in robotics simulations – to control the be-
havior of the IVAs in VR production environments. For this pur-
pose, we have improved a set of reinforcement learning environ-
ments implemented in Unity, using ML-agents for reinforcement
learning, which are available online 6 as an open source project
called Modular Agents. We have also adapted these environments
to work within the toolkit for specific scenarios (see section Mul-
timodal Interaction). Our overall goal is to provide tools to train
physics-based character controllers and make them accessible to a
broader community, beyond academic researchers. To do this we
are exploring training these controllers both within the VR devel-
opment environment and externally, on a separate physics simula-
tion engine. We aim to optimize performance to support real-time
VR applications. The trained controllers are exported as neural net-
work policies that can run efficiently within Unity, following estab-
lished practices for real-time neural network deployment [19, 14],
maintaining physical accuracy while meeting the strict performance
requirements of XR applications.

V. Multimodal Interaction
This module is dedicated to integrating the outcomes from the pre-
viously mentioned modules to create IVHs capable of realistic mul-
timodal communication. As shown in Figure 1 V, in an exemplary
scenario, the user has a smart avatar, sees a standing IVA in the
distance, and greets the agent while raising their hand (comprising
I and III modules). By hearing this and detecting the raised hand
(module II), the agent approaches the user, respects the social dis-
tance (module IV), and greets the user back. The conversation can
continue (module III). If the user changes the social distance and
comes closer to the agent, the agent shall move back and resume
the socially acceptable distance.

4 PRELIMINARY EVALUATION

We presented and provided a version of our IVH toolkit which con-
tained modules I (with only one virtual humanoid model) and III
to the Computer Science students of the Department of Computer
Science at the University of Hamburg. They used this version to
develop their Unity projects about IVHs for their Master’s project.
Four groups of students were working on different topics, all in-
cluding IVAs. Their task was to develop a research study on I)
natural interruption techniques, II) referencing scene objects in a
conversation with an IVA, III) non-verbal communication, and IV)
the ability of an IVA to demonstrate physiotherapeutic exercises to

4https://developers.meta.com/horizon/documentation/

unity/move-overview/
5https://developers.meta.com/horizon/downloads/

package/oculus-lipsync-unity/
6https://github.com/Balint-H/modular-agents

https://developers.meta.com/horizon/documentation/unity/move-overview/
https://developers.meta.com/horizon/documentation/unity/move-overview/
https://developers.meta.com/horizon/downloads/package/oculus-lipsync-unity/
https://developers.meta.com/horizon/downloads/package/oculus-lipsync-unity/
https://github.com/Balint-H/modular-agents
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Figure 3: Mean values relating to Extended Technology Acceptance Model

users. We used an 11-point Likert scale to capture their prior expe-
rience with Unity development and virtual reality before using our
tool. We also captured their experience with our IVH toolkit via
standard questionnaires and open-ended questions. Four students
(three men and one woman) with an average age of 27 (SD = 6.93)
participated in our survey. One student entered 91 for their age
and thus, was excluded from the mean calculation of the age. We
incorporated the responses from all four participants in the evalua-
tion of the remaining questions and questionnaires. They rated their
prior experience with Unity development on average 6.75 (SD=2.5)
and their prior experience with VR on average 4.5 (SD=1.29). The
rest of this section reports on the results of this preliminary eval-
uation using standard usability and user experience questionnaires
and open-ended questions.

System Usability Scale (SUS) [5]: The first questionnaire that
we used was SUS which has 10 items and measures the usability
of a system on a scale of 0-100. Our participants’ responses to this
questionnaire gave us an average SUS score of 56.88 (SD = 6.88).
This indicates an OK to Good usability and a marginal acceptability
score.

AttrakDiff [17]: The second questionnaire was AttrakDiff
which consists of 28 items grouped into four sub-scales: Pragmatic
Quality (PQ), Hedonic Quality relating to Identity (HQ-I), Hedonic
Quality concerning Stimulation (HQ-S), and overall Attractiveness
(ATT). This questionnaire helps evaluate overall user satisfaction
and enjoyment. It has been also used in previous XR research for
evaluating UX with XR systems [18]. The results show neutral to
positive evaluations for all four sub-scales: Pragmatic Quality (M =
.89,SD = .69), Hedonic Quality-Identity (M = .71,SD = .57), He-
donic Quality-Stimulation (M = .39,SD = .47), and Attractiveness
(M = .46,SD = .36). Figure 2 shows the mean values for all four
sub-scales.

Extended Technology Acceptance Model (TAM2) [46]: The
next questionnaire was TAM2 which was employed to evaluate user
acceptance and resistance to technologies. We used five sub-scales
of this questionnaire to measure Intention to Use, Perceived Useful-
ness, Perceived Ease of Use, Output Quality (e.g., “The quality of
the output I get from the system is high.”), Result Demonstrability
(e.g., “I have no difficulty telling others about the results of using
the system.”). As depicted in Figure 3, the evaluation of all scales
was neutral to positive: Intention to Use (M = 4.5,SD = 1.41), Per-
ceived Usefulness (M = 4.81,SD = 1.28), Perceived Ease of Use
(M = 4.88,SD = 1.15), Output Quality (M = 4.5,SD = .76), Re-
sult Demonstrability (M = 4.44,SD = 1.26).

Open-ended questions: At the end of the survey, we asked sev-
eral open-ended questions to capture further views of the partici-
pants about their use of our toolkit. The first question asked about
their general experience with the toolkit. Two participants wrote

that they used it for their Master’s project, one of them also for
their bachelor thesis and they were happy about it. Another user
wrote, “The intelligent virtual agent is currently missing some con-
trols, such as the left arm up and down, which is a little frustrating,
but otherwise, it’s easy to use”.

The next question asked which part of the toolkit they liked or
disliked. One user wrote, “I liked the fundamental functionality
of the agent as these worked fairly well, the only problem is that
the sound wasn’t always recognized”. Another user wrote that they
liked that “many parts of the toolkit are controllable”, while another
user liked “the 3D Animation world and disliked the usability of the
toolkit”.

We also asked what they would like to see added and their an-
swers included “more models”, “more styles, hair, clothes for the
avatar”, and “higher usability when animating and building ob-
jects”. We did not receive any responses regarding our question
about what they wish to be removed or changed from the toolkit.

To our question of whether they would work with the toolkit
again, we received three answers and all were a definite yes. Two
users also wrote that they would recommend our toolkit to others,
one of them mentioned the recommendation would be for specific
use cases. Another user wrote a “yes and no” (maybe) response to
this question.

5 DISCUSSION AND OUTLOOK

In this work, we presented a preliminary implementation of our
Intelligent Virtual Human Toolkit which consists of five modules
each of which contributes to producing realistic human-to-human
and human-to-agent interactions in XR.

The first module provides a set of diverse virtual humanoid 3D
models in terms of represented gender, age, and ethnicity, to be
used out of the box for multiple use cases including professional
collaboration, manufacturing training, health care, and cultural her-
itage. The current set of models has several limitations which will
be addressed by diversifying the body shape and size, increasing
visual fidelity, improving rendering conditions - scene, lights, and
shaders, and improving body deformation for more complex mus-
cular movements like arm twisting or secondary shoulder/clavicle
motion. Furthermore, this module will deliver a pipeline for creat-
ing humanoid 3D models based on users’ photographs.

The second module facilitates detecting and classifying the ac-
tions of virtual humans in the virtual world in realtime. Using com-
puter vision AI-based techniques, this module can already detect
the action when a virtual human raises a hand in realtime. This
action will be integrated in the future to provide a multimodal inter-
action between users and agents in an exemplary scenario described
in Section Multimodal Interaction. In addition, this module will be
further improved to include more actions and visual representations



of virtual humans such as the ones being holoported in realtime us-
ing 3D reconstruction techniques.

The third module provides speech and facial interactions for SAs
and IVAs using AI-based services (such as speech-to-text, LLM,
and text-to-speech). This allows for contextually relevant and emo-
tionally intelligent dialogues between users and IVAs. Future work
will make the IVAs visually intelligent to further facilitate vision-
based communication between users and agents.

The techniques for interactive character animation that we are
exploring are typically used in robotics and in physics simula-
tion engines. They therefore use ragdoll-like characters, made of
rigid or soft bodies assembled with joints that are actuated. How-
ever, these techniques are rarely used with skinned characters. In
turn, both video games and virtual reality users use systematically
skinned characters. It is an open question if these techniques can
render the quality of movement that is expected when we compare
these with more traditional interactive character animation tech-
niques (typically, kinematic techniques) that are de facto consid-
ered industry standards. We plan to study in detail whether this is
the case as a complement to our development efforts. An additional
implicit assumption of our efforts in Body Animation and Interac-
tion is that adopting physics-based interactive character animation
techniques will help bring more life-like movement and dynamics
to IVAs. This is an assumption that we plan to evaluate in terms
of comfort and plausibility of the VR environment, as perceived by
VR users [40].

Finally, the results of our preliminary evaluation with four par-
ticipants indicated an OK to Good usability and a marginal accept-
ability score. The poor usability was also mentioned in the addi-
tional comments of the participants which needs to be improved in
the future. Our toolkit at the time of evaluation contained one hu-
manoid 3D model from Module I (which represented both an SA
and an IVA) with one idle animation and basic speech-based inter-
action between the user and the IVA from Module III (i.e., facial
and emotional expressions were not included). As a result, partic-
ipants wished to see more models and ready-to-use animations in-
cluded in the toolkit. This has been partially addressed in terms of
ready-to-use 3D models for specific use cases included in Module
I and will be further improved in the future by including a pipeline
for creating 3D models from simple camera photos and videos by
the developer users themselves. We also observed neutral to pos-
itive evaluations for all sub-scales of AttrakDiff and TAM2 ques-
tionnaires. This means that improvements need to be made to both
the task-oriented and hedonistic qualities of our toolkit. Further
comments from the participants revealed that despite all limitations,
they would work with the toolkit again and would also recommend
it to others.

We will continue improving our toolkit to make it more usable
for creating XR solutions featuring IVHs. For future research, we
will conduct several experiments to study the effects of interaction
with single or multiple IVHs on users. For instance, we will study
the effects of multi-modal interaction with IVHs in various XR sce-
narios including cultural heritage where IVHs represent tour guides
and embody tourists, a manufacturing training scenario where both
trainers and trainees are embodied as SA and receive assistance
from an IVA, a health care scenario where IVHs help in reduction
of medical procedure anxiety, and a professional collaboration sce-
nario where users used IVHs to remotely participate in meetings in
metaverse.
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